Heard the News? Environmental Policy and Clean Investments Joëlle Noailly^{1,2} Laura Nowzohour ¹ Matthias van den Heuvel³ ¹Graduate Institute Geneva ²Vrije Universiteit Amsterdam ³École Polytechnique Fédérale de Lausanne EEA Congress 23 August 2021 ## Objective and motivation How has media attention to environmental policy evolved over the years? How does information about environmental policy affect clean investments? ## Objective and motivation How has media attention to environmental policy evolved over the years? How does information about environmental policy affect clean investments? - We aim to construct meaningful newspaper-based measures of US environmental policy over the last 40 years: - 1. general index of environmental policy - 2. 25 topic-specific indexes ### Contribution - 1. News are a great tool to study information about environmental policy - high frequency data over long time periods (news arrive daily) - covers various topics and multi-dimensional facets of environmental policy (Brunel and Levinson, 2016; Botta and Kozluck, 2014) - captures aspects of policy design (e.g. uncertainty, complexity) - 2. Novel methods relying on **text-mining techniques** (Gentzkow and Shapiro, 2010; Bybee et al, 2020) - 3. Using our novel indices, we study whether more media attention to EnvP makes clean firms more attractive to investors. ## Key findings ### Historical evolution of US environmental policy + 25 sub-topics Meaningful empirical association between our news index and proxies for clean investments (in VAR and firm-level estimations). ## Outline ## Measuring environmental policy Data Environmental Policy Index Topic-specific indexes #### EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations Conclusions ### Data - News articles extracted from 10 US newspapers over 1981-2019. - Monthly counts of articles relating to environmental and climate policy (EnvP) + total volume of articles. - Source: automated access to Factiva, Dow Jones. | Share | |-------| | 22.5% | | 15.3% | | 13.8% | | 11.5% | | 10.8% | | 9.8% | | 6.2% | | 5.0% | | 3.4% | | 1.7% | | | ## Measuring environmental policy Data ## Environmental Policy Index Topic-specific indexes #### EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations #### Conclusions ## Identifying EnvP articles through text-mining (1) 1. 15.2 million articles (10 newspapers) accessed on Factiva. → only a subset are 'true' EnvP articles. ## Identifying EnvP articles through text-mining (1) - 15.2 million articles (10 newspapers) accessed on Factiva. → only a subset are 'true' EnvP articles. - 2. Broad environmental policy query to narrow down the universe of articles (i.e. 500,000) ## Identifying EnvP articles through text-mining (1) - 1. 15.2 million articles (10 newspapers) accessed on Factiva. → only a subset are 'true' EnvP articles. - 2. Broad environmental policy query to narrow down the universe of articles (i.e. 500,000) - 3. Training set: random draw of 2,500 articles that we label manually. An article is coded as irrelevant in our codebook if: - ▶ No environment : "Brexit has caused changes in the business climate." - ► No policy : "New technological breakthrough for solar cells." # Identifying EnvP articles through text-mining (2) Training a supervised ML algorithm for text classification - ► Algorithm produces a rule predicting whether an article is about EnvP, based on words in a given article. - ▶ Best performing algorithm: precision: 77% (close to average precision of annotators of 83%), and recall 65%. ► What are precision and recall? # Identifying EnvP articles through text-mining (2) Training a supervised ML algorithm for text classification - ► Algorithm produces a rule predicting whether an article is about EnvP, based on words in a given article. - ▶ Best performing algorithm: precision: 77% (close to average precision of annotators of 83%), and recall 65%. ▶ What are precision and recall? ## Classifying our newspaper articles ► Using SVM prediction rule on our set of 500,000 articles, we identify 84,000 news articles as "true" EnvP ## A glimpse into SVM top features Table: 50 most discriminating words for predicting our EnvP index according to the trained SVM classifier. | Word | Weight | Word | Weight | Word | Weight | |---------------|--------|-----------------|--------|--------------|--------| | energy | 3.16 | crist | 1.34 | volkswagen | 1.09 | | emission | 3.06 | air | 1.33 | refrigerator | 1.08 | | environmental | 2.95 | ethanol | 1.32 | utility | 1.07 | | epa | 2.24 | global warming | 1.32 | cleanup | 1.06 | | solar | 2.17 | coal | 1.30 | federal | 1.05 | | obama | 2.05 | climate | 1.26 | car | 1.00 | | clean | 1.89 | regulation | 1.24 | penalty | 0.99 | | pollution | 1.83 | program | 1.18 | house | 0.98 | | waste | 1.67 | renewable | 1.17 | bannon | 0.98 | | warming | 1.62 | reef | 1.15 | bill | 0.98 | | recycle | 1.47 | protection | 1.14 | mercury | 0.97 | | power | 1.45 | climate change | 1.12 | electric | 0.96 | | global | 1.38 | env. protection | 1.10 | gasoline | 0.94 | | standard | 1.36 | clean air | 1.10 | environment | 0.94 | ▶ Top SVM articles ### General EnvP Index Historial evolution of EnvP media coverage (scaled by total volume of articles). ## EnvP versus Climate Change Index ▶ Climate policy sentiment ## Measuring environmental policy Data Environmental Policy Index Topic-specific indexes #### EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations #### Conclusions ## Identifying EnvP topics ### Unsupervised ML algorithm for topic identification - 84,000 EnvP articles over 1981-2009. - Topic modeling using Latent Dirichlet Allocation (LDA). ## Identifying EnvP topics #### Unsupervised ML algorithm for topic identification - 84,000 EnvP articles over 1981-2009. - Topic modeling using Latent Dirichlet Allocation (LDA). - ► LDA probablistically uncovers hidden content structure (here: 25 topics) based on co-occurrence of terms. ## Identifying EnvP topics #### Unsupervised ML algorithm for topic identification - 84,000 EnvP articles over 1981-2009. - Topic modeling using Latent Dirichlet Allocation (LDA). - ► LDA probablistically uncovers hidden content structure (here: 25 topics) based on co-occurrence of terms. - Each news article is associated with multiple topics. Example document ## Wordclouds EnvP topics ▶ Full topics list ## Evolution of topic sub-indexes over time ## Topic International Agreements Source: Dow Jones, EPFL, IHEID, SIB & HES-SO ## Topic Renewables - EnvP-RE Source: Dow Jones, EPFL, IHEID, SIB & HES-SO ## Measuring environmental policy Data Environmental Policy Index # EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations #### Conclusions #### EnvP news and clean investments # How do our news-based environmental policy indexes relate to clean markets? - ► **Hypothesis**: More media attention to EnvP makes clean firms more attractive to investors. - ► **Channels**: increased awareness of investment opportunities in clean markets **and** reflection of increased policy stringency. #### EnvP news and clean investments # How do our news-based environmental policy indexes relate to clean markets? - ► **Hypothesis**: More media attention to EnvP makes clean firms more attractive to investors. - ► Channels: increased awareness of investment opportunities in clean markets and reflection of increased policy stringency. - Dynamic relationship between our news index and demand for the main benchmark clean-energ ETF and aggregate VC deals in VAR models - Impulse response of to a shock in our renewable policy news index. - 2. Firm-level regressions identification strategy differentiate firms by exposure to environmental policy. ► EnvP vs OECD Policy Stringency # Clean-energy stocks (1) ECO and PBW-ETF WilderHill Clean-energy Index, 2001-2019 monthly. Source: Datastream # Clean-energy stocks (2) Impulse response function: effect of a shock in EnvP-RE news on clean-energy fund demand (AuM of PBW ETF). A one-SD shock to EnvP-RE news growth is associated with an increase in 5 million USD (0.1 SD) in AuM of the PBW ETF ► Robustness to different VAR specifications Y ► Variables and Cholesky ordering # Clean-energy stocks (3) Impulse response function: effect of other shocks on clean-energy fund demand (AuM of PBW ETF). ## Measuring environmental policy Data Environmental Policy Index Topic-specific indexes #### EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations #### Conclusions # Firm-level stock returns (1) - ► **Hypothesis**: We expect polluting (green) firms to be negatively (positively) affected by EnvP news. - ▶ **Identification**: differentiate firms by exposure to environmental policy (annual scope-1 GHG emissions / green revenues) - ► Sample: 1,400 US firms, Jan 2004-Mar 2019. - Monthly firm-level stock returns and annual firm-level balance sheet data from Datastream. - Annual firm-level GHG emissions (scope 1) from Trucost. - For a subsample, we obtain additional data on firms' yearly green revenue shares (FTSE Russell) ### Firm-level GHG emissions ## Firm-level stock returns (2) # How does media attention to environmental policy affect firm-level stock returns? ► LHS: continuously compounded log returns in excess of safe interest rate for each firm. # Firm-level stock returns (2) # How does media attention to environmental policy affect firm-level stock returns? - ► LHS: continuously compounded log returns in excess of safe interest rate for each firm. - ▶ RHS: unanticipated (white-noise) component of EnvP: $EnvP_t = \alpha + \sum_{k=1}^7 \beta_k EnvP_{t-k} + \varepsilon_t^{EnvP}$ (Brogaard & Detzel, 2015). ## Firm-level stock returns (2) # How does media attention to environmental policy affect firm-level stock returns? - ► LHS: continuously compounded log returns in excess of safe interest rate for each firm. - ▶ **RHS**: unanticipated (white-noise) component of EnvP: $EnvP_t = \alpha + \sum_{k=1}^7 \beta_k EnvP_{t-k} + \varepsilon_t^{\text{EnvP}}$ (Brogaard & Detzel, 2015). #### Additional controls - Firm heterogeneity: size, profitability, leverage, dividends per share and fixed effects. - ► **Technological progress**: industry-year time trend. - ► Month FE or Fama-French risk factors (MKTRF, SMB, HML, RMW and CMA). | | (1)
ln(r_excess) | (2)
ln(r_excess) | (3)
ln(r_excess) | (4)
ln(r_excess) | (5)
ln(r_excess) | (6)
ln(r_excess) | (7)
ln(r_excess) | |---|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------| | EnvP | 0.0231*** (0.0006) | 0.0231***
(0.0006) | 0.0205*** (0.0008) | 0.0205*** (0.0008) | 0.0351***
(0.0022) | 0.0224***
(0.0016) | 0.0219***
(0.0013) | | EnvP × AVG Emissions | -0.0026***
(0.0004) | | -0.0023***
(0.0004) | | | | -0.0013***
(0.0004) | | $EnvP \times AVG$ Emission Intensity | | -0.0021***
(0.0004) | | -0.0016***
(0.0005) | | | | | $EnvP \times Quartile of emissions=2$ | | | | | -0.0107***
(0.0025) | | | | EnvP \times Quartile of emissions=3 | | | | | -0.0169***
(0.0025) | | | | EnvP \times Quartile of emissions=4 | | | | | -0.0198***
(0.0024) | | | | EnvP \times Quartile of emission intensity=2 | | | | | | -0.0012
(0.0022) | | | EnvP \times Quartile of emission intensity=3 | | | | | | -0.0017
(0.0020) | | | EnvP \times Quartile of emission intensity=4 | | | | | | -0.0043**
(0.0020) | | | Green Revenue Share | | | | | | | 0.0025
(0.0027) | | $\operatorname{EnvP} \times \operatorname{Green} \ \operatorname{Revenue} \ \operatorname{Share}$ | | | | | | | 0.0060***
(0.0015) | | Firm FE | Yes | Industry-Year Trend | Yes | Firm controls | No | No | Yes | Yes | Yes | Yes | Yes | | Risk factors | Yes | Observations | 69,668 | 69,668 | 34,689 | 34,689 | 34,689 | 34,689 | 9,579 | | Firms | 1,400 | 1,400 | 613 | 613 | 613 | 613 | 230 | | \mathbb{R}^2 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | 0.96 | 0.95 | | | (1)
ln(r_excess) | (2)
ln(r_excess) | (3)
ln(r_excess) | (4)
ln(r_excess) | (5)
ln(r_excess) | (6)
ln(r_excess) | (7)
ln(r_excess | |--|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------| | EnvP | 0.0231***
(0.0006) | 0.0231***
(0.0006) | 0.0205***
(0.0008) | 0.0205***
(0.0008) | 0.0351***
(0.0022) | 0.0224***
(0.0016) | 0.0219***
(0.0013) | | $EnvP \times AVG Emissions$ | -0.0026***
(0.0004) | | -0.0023***
(0.0004) | | | | -0.0013***
(0.0004) | | $EnvP \times AVG$ Emission Intensity | | -0.0021***
(0.0004) | | -0.0016***
(0.0005) | | | | | EnvP \times Quartile of emissions=2 | | | | | -0.0107***
(0.0025) | | | | EnvP \times Quartile of emissions=3 | | | | | -0.0169***
(0.0025) | | | | EnvP \times Quartile of emissions=4 | | | | | -0.0198***
(0.0024) | | | | EnvP \times Quartile of emission intensity=2 | | | | | | -0.0012
(0.0022) | | | EnvP \times Quartile of emission intensity=3 | | | | | | -0.0017
(0.0020) | | | ${\rm EnvP} \times {\rm Quartile~of~emission~intensity}{=}4$ | | | | | | -0.0043**
(0.0020) | | | Green Revenue Share | | | | | | | 0.0025
(0.0027) | | $EnvP \times Green Revenue Share$ | | | | | | | 0.0060***
(0.0015) | | Firm FE | Yes | Industry-Year Trend | Yes | Firm controls | No | No | Yes | Yes | Yes | Yes | Yes | | Risk factors | Yes | Observations | 69,668 | 69,668 | 34,689 | 34,689 | 34,689 | 34,689 | 9,579 | | Firms | 1,400 | 1,400 | 613 | 613 | 613 | 613 | 230 | | \mathbb{R}^2 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | 0.96 | 0.95 | | | (1)
ln(r_excess) | (2)
ln(r_excess) | (3)
ln(r_excess) | (4)
ln(r_excess) | (5)
ln(r_excess) | (6)
ln(r_excess) | (7)
ln(r_excess) | |--|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------| | EnvP | 0.0231***
(0.0006) | 0.0231***
(0.0006) | 0.0205***
(0.0008) | 0.0205***
(0.0008) | 0.0351***
(0.0022) | 0.0224***
(0.0016) | 0.0219***
(0.0013) | | $EnvP \times AVG Emissions$ | -0.0026***
(0.0004) | | -0.0023***
(0.0004) | | | | -0.0013***
(0.0004) | | $EnvP \times AVG$ Emission Intensity | | -0.0021***
(0.0004) | | -0.0016***
(0.0005) | | | | | EnvP \times Quartile of emissions=2 | | | | | -0.0107***
(0.0025) | | | | EnvP \times Quartile of emissions=3 | | | | | -0.0169***
(0.0025) | | | | $EnvP \times Quartile of emissions=4$ | | | | | -0.0198***
(0.0024) | | | | EnvP \times Quartile of emission intensity=2 | | | | | | -0.0012
(0.0022) | | | EnvP \times Quartile of emission intensity=3 | | | | | | -0.0017
(0.0020) | | | EnvP \times Quartile of emission intensity=4 | | | | | | -0.0043**
(0.0020) | | | Green Revenue Share | | | | | | | 0.0025
(0.0027) | | $EnvP \times Green Revenue Share$ | | | | | | | 0.0060***
(0.0015) | | Firm FE | Yes | Industry-Year Trend | Yes | Firm controls | No | No | Yes | Yes | Yes | Yes | Yes | | Risk factors | Yes | Observations | 69,668 | 69,668 | 34,689 | 34,689 | 34,689 | 34,689 | 9,579 | | Firms | 1,400 | 1,400 | 613 | 613 | 613 | 613 | 230 | | \mathbb{R}^2 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | 0.96 | 0.95 | | | $_{\ln(\text{r_excess})}^{(1)}$ | (2)
ln(r_excess) | (3)
ln(r_excess) | (4)
ln(r_excess) | $\ln(5)$ $\ln(r_{\text{-excess}})$ | (6)
ln(r_excess) | (7)
ln(r_excess) | |--|----------------------------------|------------------------|------------------------|------------------------|------------------------------------|-----------------------|------------------------| | EnvP | 0.0231***
(0.0006) | 0.0231***
(0.0006) | 0.0205***
(0.0008) | 0.0205***
(0.0008) | 0.0351***
(0.0022) | 0.0224***
(0.0016) | 0.0219***
(0.0013) | | EnvP × AVG Emissions | -0.0026***
(0.0004) | | -0.0023***
(0.0004) | | | | -0.0013***
(0.0004) | | $EnvP \times AVG$ Emission Intensity | | -0.0021***
(0.0004) | | -0.0016***
(0.0005) | | | | | EnvP \times Quartile of emissions=2 | | | | | -0.0107***
(0.0025) | | | | EnvP \times Quartile of emissions=3 | | | | | -0.0169***
(0.0025) | | | | $EnvP \times Quartile of emissions=4$ | | | | | -0.0198***
(0.0024) | | | | $EnvP \times Quartile of emission intensity=2$ | | | | | | -0.0012
(0.0022) | | | EnvP \times Quartile of emission intensity=3 | | | | | | -0.0017
(0.0020) | | | EnvP \times Quartile of emission intensity=4 | | | | | | -0.0043**
(0.0020) | | | Green Revenue Share | | | | | | | 0.0025
(0.0027) | | EnvP × Green Revenue Share | | | | | | | 0.0060***
(0.0015) | | Firm FE | Yes | Industry-Year Trend | Yes | Firm controls | No | No | Yes | Yes | Yes | Yes | Yes | | Risk factors | Yes | Observations | 69,668 | 69,668 | 34,689 | 34,689 | 34,689 | 34,689 | 9,579 | | Firms | 1,400 | 1,400 | 613 | 613 | 613 | 613 | 230 | | \mathbb{R}^2 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | 0.96 | 0.95 | | | (1)
ln(r_excess) | |---|------------------------| | EnvP | 0.0079***
(0.0006) | | $EnvP \times AVG Emissions$ | -0.0013***
(0.0003) | | EnvP net sentiment | -0.0724***
(0.0020) | | EnvP net sentiment \times AVG Emissions | 0.0056***
(0.0011) | | Firm FE | Yes | | Industry-Year Trend | Yes | | Firm controls | Yes | | Risk factors | Yes | | Observations | 34,689 | | Firms | 613 | | \mathbb{R}^2 | 0.97 | #### Measuring environmental policy Data Environmental Policy Index Topic-specific indexes #### EnvP news and clean investments Aggregate clean investments - VAR models Firm-level estimations #### Conclusions ### Conclusions and next steps - News provide a very rich dataset covering many environmental topics at high frequency - Novel methods based on text-mining ML algorithms to extract information from news - Meaningful relationship between our news-based index and clean markets → firms exposed to environmental policy respond to EnvP news - Ongoing work on news-index to measure uncertainty about environmental policy (rollbacks, awaiting decisions from courts, etc) ### Supplementary Slides ### Our codebook | 0 | Article is about foreign (non US) environmental policy (and is not discussed/compared to or in relation to US env policy) | | |---|--|--| | | RELEVANT below | | | 1 | Article is about environment/climate, with minor but significant (=explicit and specific, not a general statement) reference to environmental policy. (even if it's a opinion piece) - Article is about local environmental impacts in a very specific geographical area, with some reference to state or federal env/climate policy - Note: env policy implies legislation, laws, but also the financing of large demonstration projects, renewable power plants, etc by a (local) public authority. | | Figure: Excerpt from our codebook ## Support Vector Machines (SVM) SVM maximizes the distance between the two closest articles on both sides of the decision boundary: Figure: Support Vector Machines #### Precision & Recall ## Articles with highest SVM score | Title | Date | SVM | Newspaper | Excerpt | |---|--------------|------|-----------------|---| | Time to Confront Climate
Change | Dec 28, 2012 | 4.78 | New York Times | "That ruling, known as the endangerment finding, made possible
the administration's historic new emissions standards for cars
and light rucks. It also provided the basis for the first steps
toward regulating emissions from new power plants, and,
possibly, further steps requiring existing plants to reduce global
warming pollution." | | Environmentalists, Industry
Air Differences on Pollution | Oct 17, 1999 | 4.66 | Washington Post | "As a result, environmental groups are pressing states and
Congress for specific environmental protections against
increased pollution, financial incentives for energy efficiency
and renewable energy, and federal pollution guidelines to be
part of the overall deregulatory effort." | | Trump can't do much to
worsen climate change | Apr 2, 2017 | 4.64 | Washington Post | "Tump does not want to regulate carbon or other fossil-fuel
-related pollutants under the Clean Air Act, but the statute and
the Supreme Court say that he must. As Tump repeals the Clean
Power Plan and updated limits on mercury, coal ash and smog,
he will face legal challenges that he may well lose." | | On Environmental Rules,
Bush Sees a Balance,
Critics a Threat | Feb 23, 2003 | 4.55 | New York Times | "Whether rejecting a treaty on global warming, questioning
Clinton-era rules on forest protection or pressing for changes in
landmark environmental laws, Mr. Bush has imposed a distinctive
stamp on a vast landscape of issues affecting air, water, land,
energy and the global climate. | | Candidates Agree World
Is Warming, but Talk
Stops There | Oct 26, 2012 | 4.48 | New York Times | "Mr. Obama has supported broad climate change legislation,
financed extensive clean energy projects and pushed new
regulations to reduce global warming emissions from cars
and power plants." | → Back # Clean-energy VC deals (1) Source VC deals: Cleantech Group i3 database, 1997-2019, monthly number of deals in Clean-energy. # Clean-energy VC deals (2) Impulse response function: effect of a shock in Env-RE news on number of VC deals. A one-SD increase in EnvP-RE news is associated with nearly one more VC deal in Clean-energy three months after the shock. ▶ Robustness to different VAR specifications \(\) \(\) Variables and Cholesky ordering #### Political slant? **Conservative-leaning** – WSJ, Houston Chronicle, Boston Herald, Dallas Morning News. **Liberal-leaning** – NYT, Washington Post, SFC, Tampa Bay Times, San Diego Union Tribune and San Jose Mercury News. ### EnvP Index vs OECD Stringency Index #### Robustness VAR VC # Variables and Cholesky ordering in VAR VC deals Table: Baseline VAR VC deals | Variables | Version used | Cholesky ordering | |--------------------------------------|--------------|-------------------| | Our EnvP-RE policy index | Levels | 1 | | US West Texas Intermediate crude oil | Log diff | 2 | | spot price | | | | GDP | Log diff | 3 | | Federal funds effective rate | First diff | 4 | | Number of VC deals in Clean-energy | Levels | 5 | Time trend; 3 lags. #### Robustness VAR stock Estimated effect of a shock in EnvP-RE news index on PBW-ETF market cap changes, monthly ## Variables and Cholesky ordering in VAR stock Table: Baseline VAR stock | Variables | Version used | Cholesky ordering | |--------------------------------------|--------------|-------------------| | Our EnvP-RE policy index | Log diff | 1 | | US West Texas Intermediate crude oil | Log diff | 2 | | spot price | | | | Federal funds effective rate | First diff | 3 | | NYSE Arca Technology Stock Index | Log diff | 4 | | WilderHill Clean-energy Stock Index | Log diff | 5 | No time trend; 2 lags. ## Firm-level VC investments (1) - ➤ Crunchbase: 31,808 active startup firms, venture capital funding rounds over Jan 1998-Mar 2019, firm-quarter panel dataset - Estimate impact on EnvP news on probability of receiving VC funding (and amount) in next quarter - Identification strategy differentiates startups by exposure to environmental policy → cleantech vs. other startups - ightharpoonup Cleantech = 4%, Clean-energy = 2.4% of VC deals - Controls: GDP growth, Fed funds rate, oil price, firm's age $$VC_{i,t+s} = \alpha + \beta_1 EnvP_t + \beta_2 EnvP_t \cdot Cleantech_i + \beta_3 Controls_{i,t} + \beta_4 TimeTrend_t + \gamma_{quarter/year/industry/state/series} + \epsilon_{i,t}$$ ## Firm-level VC investments (2) | | (1)
Funded (Q+1) | (2)
Funded (Q+1) | (3)
Funded (Q+1) | (4)
Amount (Q+1) | (5)
Amount (Q+1) | |------------------------------|-------------------------|--------------------------|---------------------------|----------------------|-----------------------| | Log EnvP index | 0.00470***
(0.00121) | -0.00529***
(0.00195) | -0.00522**
(0.00214) | -0.114**
(0.0467) | -0.127***
(0.0467) | | Cleantech | -0.126***
(0.0162) | -0.124***
(0.0197) | -0.113***
(0.0200) | -1.707***
(0.586) | -2.736***
(0.614) | | Log EnvP x Cleantech | 0.0272***
(0.00332) | 0.0278***
(0.00461) | 0.0209***
(0.00481) | 0.391***
(0.119) | 0.760***
(0.136) | | Log Sentiment Index | | | -0.00148***
(0.000573) | | | | Log Sentiment x
Cleantech | | | 0.00504***
(0.00171) | | | | Industry controls | Yes | Yes | Yes | Yes | Yes | | Other controls | Yes | Yes | Yes | Yes | Yes | | Quarter FE | No | Yes | Yes | Yes | Yes | | Year FE | No | Yes | Yes | Yes | Yes | | State FE | No | Yes | Yes | Yes | Yes | | Industry-time trend | No | Yes | Yes | No | Yes | | Series FE | No | Yes | Yes | No | Yes | | Observations R^2 | 1056221
0.003 | 1056221
0.006 | 980975
0.006 | 57319
0.133 | 57319
0.135 | A doubling of EnvP media coverage is associated with an increase of receiving VC funding by 1.6%-pt (=26% of average probability that a clean-tech startup gets funded). Back ## Climate Policy Sentiment ## Topics list | Topic | # | Topic | # | Topic | # | |--------------------------|----|----------------------------|----|-----------------------|----| | Climate Change | 19 | Oil & Gas production | 15 | Vehicle Fuels | 12 | | EPA & Federal Gov. | 5 | Intl. Climate Negotiations | 18 | Waste & Recycling | 26 | | Cleanups & Courts | 17 | Texas | 11 | Green Buildings | 25 | | Government Budgets | 3 | Renewables | 6 | North-East Region | 8 | | Air Pollution | 9 | Env. Conservation | 4 | Offshore Oil Drilling | 7 | | Congress & Policy | 13 | Water Pollution | 1 | Nuclear Power | 21 | | Businesses & Investments | 22 | Climate Science | 16 | Coal Industry | 10 | | Presidents & Campaigns | 23 | California | 14 | | | | Power & Utilities | 24 | Automobile Industry | 2 | | | Table 4: Topic interpretation and classification (ranked by size). Topic # refers to labels in Figures 5 and 6. → Back